What’s worthwhile for MDRO screening and isolation in NZ?
A ‘complex problem’
Dr Michael Gardam
NZ IPC Nurses Conference 2015

• One size rarely fits all
• Simple rules
• Local conditions matter
• Engage with those who are touching the problem (front-line ownership)
• Resilience (safety nets)
What is a multidrug-resistant organism?
Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance

¹) European Centre for Disease Prevention and Control, Stockholm, Sweden, 2) Office of Infectious Diseases, Department of Health and Human Services, Centers for Disease Control and Prevention, Atlanta, GA, USA, 3) Division of Epidemiology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel, 4) Alfa Institute of Biomedical Sciences (AIBS), Athens, Greece, 5) Department of Medicine, Tufts University School of Medicine, Boston, MA, USA, 6) Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden, 7) Infection Control Programme, University of Geneva Hospitals, Geneva, Switzerland, 8) Department of Pathology and Laboratory Medicine, University of California Los Angeles Medical Center, Los Angeles, CA, USA, 9) Department of Clinical Microbiology, Central Hospital, Växjö, 10) Department of Bacteriology, Swedish Institute for Infectious Disease Control, Solna, Sweden, 11) The University of Queensland Centre for Clinical Research, Royal Brisbane and Women’s Hospital, Brisbane, Qld, Australia, 12) Warren Alpert Medical School of Brown University, Providence, RI, 13) Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA and 14) Department of Microbiology, National School of Public Health, Athens, Greece

Clin Microbiol Infect 2012; 18: 268–281
Definition

• MDRO = ‘acquired non-susceptibility to at least one agent in three or more antimicrobial categories’

• E.g. *Staph. aureus*

• MRSA = MDRO

• Otherwise ≥ 3 of →

Clin Microbiol Infect 2012; 18: 268–281
Definition

- In your location at a particular time:

 Clinically important +

 Uncommon +

 Resistant to standard empiric antibiotics.

Staphylococcus aureus

Isolates from all sources, 1 January 2013 to 31 December 2014. Method of testing: disk diffusion (Kirby-Bauer).

<table>
<thead>
<tr>
<th>Antibiotic</th>
<th>Percentage Susceptible — NELSON and MARLBOROUGH 2013-14 (No. tested)</th>
<th>Percentage Susceptible — NEW ZEALAND 2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clindamycin</td>
<td>97% (6376)</td>
<td>91%</td>
</tr>
<tr>
<td>Cotrimoxazole</td>
<td>99% (6189)</td>
<td>99%</td>
</tr>
<tr>
<td>Doxycycline</td>
<td>98% (5589)</td>
<td>98%</td>
</tr>
<tr>
<td>Erythromycin</td>
<td>91% (6422)</td>
<td>88%</td>
</tr>
<tr>
<td>Flucloxacin²</td>
<td>95% (6662)</td>
<td>90%</td>
</tr>
<tr>
<td>Fucidic acid</td>
<td>77% (492)</td>
<td>81%</td>
</tr>
<tr>
<td>Mupirocin</td>
<td>87% (489)</td>
<td>91%</td>
</tr>
<tr>
<td>Penicillin²</td>
<td>16% (5433)</td>
<td>14%</td>
</tr>
</tbody>
</table>
MRSA - methicillin-resistant *S. aureus*

Figure 1. MRSA period-prevalence rates, 2005-2014

VRE - vancomycin-resistant Enterococci*

Figure 1. Species and van genotype of VRE isolated in New Zealand, 2005-2014

ESBL-producing Enterobacteriaceae*

Figure 1. ESBL-producing Enterobacteriaceae incidence rates, 2005-2014

Carbapenem-resistant gram-negative bacilli*

Figure 1. Number of carbapenemase-producing Enterobacteriaceae isolates identified in New Zealand, by major β-lactamase class, each year from 2009 to 2014
What is the problem with MDROs?
MDROs

- More treatment failure.
- More expensive and toxic antibiotics.
- Ultimately untreatable?

The proportion of methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococcal (VRE) infections is increasing (1987–2003).

Note: Data refer to infections in intensive care unit (ICU) patients only.
Colonisation → infection

- 19 to 25% of ICU patients who are colonised with MDROs → infection with the same
- Recurrent UTI: Mrs RS
MDROs and hospitals
MDROs spread in hospitals

- Sewage
- Risk factors
29 patients without VRE bacteria on body

INTENSIVE CARE UNIT (Chicago, lots of VRE)

12 (41%) patients picked up VRE

Lancet 1996; 348(9042): 1615-9
316 patients without *S. aureus* bacteria on body

INTENSIVE CARE UNIT

45 (14%) patients picked up *S. aureus*
Do staff pick up bacteria from patients?

1. Patients with *Staphylococcus aureus* bacteria on skin

2. Nurses touch patient or his clothing or bed

3. Test nurses’ hands after leaving patient

17% of nurses have *Staphylococcus aureus* on hands
Do staff pick up bacteria from patients?

1. Patients with *Enterococcus* bacteria on skin
2. Nurses touch patient or his clothing or bed
3. Test nurses’ hands after leaving patient

75% of nurses have *Enterococcus* on hands
How long do germs live on hands?

<table>
<thead>
<tr>
<th>Organism</th>
<th>Survival</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rhinovirus (common cold)</td>
<td>38% at 1 hour</td>
</tr>
<tr>
<td>Rotavirus (diarrhoea)</td>
<td>16% at 1 hour</td>
</tr>
<tr>
<td>Shigella (food poisoning)</td>
<td>More than 1 hour</td>
</tr>
<tr>
<td>Enterococci (gut bacteria)</td>
<td>More than 1 hour</td>
</tr>
</tbody>
</table>
Random hand testing
Burns unit nurses
• clean uniform and gown
• procedure

Remove gown

Put gown on researcher

Researcher
• 25-minute simulated patient care exercise

Bacteria from burns unit patient grown in
12 of 15 experiments.
Up to 3000 organisms.

Culture bedding and pajamas of simulated patient
Antibiotic-resistant bacteria on surfaces?

- Singapore, 800-bed hospital, where antibiotic-resistant bacteria are endemic

J Med Micro 2013;62:766–772

Table 1. Environmental recovery of MDROs from sampled surfaces

<table>
<thead>
<tr>
<th>Area</th>
<th>Surface</th>
<th>No. samples</th>
<th>MRSA Positive (%)</th>
<th>MRSA Organism density (c.f.u. cm⁻²)</th>
<th>CR A. baumannii Positive (%)</th>
<th>CR A. baumannii Organism density (c.f.u. cm⁻²)</th>
<th>VRE Positive (%)</th>
<th>VRE Organism density (c.f.u. cm⁻²)</th>
<th>Ceph-R Klebsiella spp.* Positive (%)</th>
<th>Ceph-R Klebsiella spp.* Organism density (c.f.u. cm⁻²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Immediate patient</td>
<td>All sampled areas</td>
<td>50</td>
<td>82</td>
<td>0.42</td>
<td>40</td>
<td>0.47</td>
<td>4</td>
<td>0.29</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>environment</td>
<td>Bed frame</td>
<td>25</td>
<td>88</td>
<td>0.41</td>
<td>48</td>
<td>0.47</td>
<td>8</td>
<td>0.29</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Overbed table</td>
<td>25</td>
<td>76</td>
<td>0.44</td>
<td>32</td>
<td>0.46</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Commonly used</td>
<td>All sampled areas</td>
<td>13</td>
<td>62</td>
<td>0.83</td>
<td>15</td>
<td>0.31</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>equipment</td>
<td>Glucometer</td>
<td>2</td>
<td>50</td>
<td>1.54</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Stethoscope</td>
<td>6</td>
<td>67</td>
<td>0.64</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>BP cuff</td>
<td>5</td>
<td>60</td>
<td>0.84</td>
<td>40</td>
<td>0.31</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Commonly touched</td>
<td>All sampled areas</td>
<td>19</td>
<td>63</td>
<td>0.59</td>
<td>10</td>
<td>0.11</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>surfaces</td>
<td>Bedside medical</td>
<td>6</td>
<td>100</td>
<td>0.37</td>
<td>17</td>
<td>0.11</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>computer</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Door handle</td>
<td>7</td>
<td>43</td>
<td>0.87</td>
<td>14</td>
<td>0.12</td>
<td>–</td>
<td>–</td>
<td>14</td>
<td>0.35</td>
</tr>
<tr>
<td></td>
<td>Telephone</td>
<td>6</td>
<td>50</td>
<td>0.76</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>All sites</td>
<td></td>
<td>82</td>
<td>74</td>
<td>0.51</td>
<td>29</td>
<td>0.42</td>
<td>2</td>
<td>0.29</td>
<td>1</td>
<td>0.29</td>
</tr>
</tbody>
</table>

Ceph-R, third-generation cephalosporin resistant.
Surface contamination

- Survival: days to months
- Becoming colonised in hospital linked to colonisation status of prior room occupant for MRSA, VRE, C. difficile, MDR-Acinetobacter baumanii and MDR-Pseudomonas aeruginosa

 Arch Int Med 2006; 166: 1945

 Arch Int Med 2011; 171(6): 491-4

 ICHE 2011; 32: 201-6

 Clin Micro Infect 2011; 17: 201-8

- Good cleaning reduces MDRO transmission.

 Clin Infect Dis 2006; 42(11): 1552-60
Identification and control of a gentamicin resistant, meticillin susceptible Staphylococcus aureus outbreak on a neonatal unit
Jonathan A Otter, Bethany Davies, Esse Menson, John L Klein, Timothy L Watts, Angela M Kearns, Bruno Pichon, Jonathan D Edgeworth and Gary L French
Journal of Infection Prevention 2014 15: 104 originally published online 11 February 2014
DOI: 10.1177/1757177413520057

The online version of this article can be found at:
http://bji.sagepub.com/content/15/3/104
Two conceptual solutions to hospital MDRO transmission
Conceptual paths

• Horizontal
 • Assume every patient has pathogenic organisms.
 • Hand hygiene, standard precautions, cleaning, antibiotic stewardship, chlorhexidine washes in ICU.
 • Why?: Minority of carriers known, most transmission from asymptomatic carriers, is a little MRSA more important than a lot of MSSA?

• Vertical
 • Target specific pathogenic organisms.
 • Surveillance/screening, isolation, decolonisation.
 • Why?: horizontal methods not perfect.
Do isolation precautions work?
Review #1 – JAC Jan 2014

- VRE transmission:
 - 2 studies show hand hygiene is effective.
 - 2 studies show isolation precautions *not* effective.
Review #2 – ICHE July 2014

- MRSA – more than 100 studies but poor quality, weak evidence, varied results and controversial conclusions – unable to prove that MRSA screening, isolation +/- decolonisation is effective.

- MDR-GNR – evidence even poorer.
Contact precautions ‘may help’ reduce patient-to-patient spread of MRSA within the hospital’

Isolate all MRSA-infected and colonised patients.

If transmission not controlled: one or more of increased surveillance, decolonisation, or universal gown and gloves.
Review #3 – SMW Sept 2014

- ARE, VRE, *C. difficile*, ESBLs in ICU
 - Mixed results for screening and isolation – difficult to know if it works.

Enterococci, Clostridium difficile and ESBL-producing bacteria: epidemiology, clinical impact and prevention in ICU patients

Jan A. Sidler, Manuel Battegay, Sarah Tschudin-Sutter, Andreas F. Widmer, Maja Weissler

Division of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, Switzerland
Review #4 – ECDC Dec 2014

- ESBLs - poor studies – unable to be certain about anything.
- Probably effective:
 - Antibiotic restriction
 - Surveillance + isolation
 - IPC bundles (e.g., HH, isolation, cohorting, case notification, antiseptic bathing....)
Harm from isolation?

- Reduced healthcare worker visits – several studies
- Hassle and disruption
- Cost – construction and PPE
- Mixed results on:
 - patient falls
 - health-care errors
 - nurse efficiency
 - patient satisfaction.
Isolation - summary

- Poor evidence ≠ not effective
- Probably effective based on available studies
- I reckon isolation precautions are effective
- Guidelines say to do it!

→ use isolation precautions but
not instead of horizontal strategies.
→ prioritise isolation to highest risk patients,
organisms and locations.
Which MDRO patients to isolate?
Things to consider

The hospital
- How many isolation rooms?
- What’s your budget?
- How high is the risk of transmission and harm at a location?
 - ICU/Haem Onc > acute wards > rehab > mental health
 - (Beware: inconsistency → confusion)

The patient
- Known vs possible
- Active infection?
- IDUC or incontinent?

The MDRO
- How transmissible?
- Prevalence and impact
- Known to unknown ratio
- Outbreak?
Awaiting results of screening

- **MRSA**
 - Nelson – thousands of screens - almost all positives were previously known except:
 - 4 tertiary hospital-to-Nelson transfers
 - 4 new staff
 - Wellington – Tim Blackmore ‘1% of 4500 MRSA screens positive.’

- **VRE** - Nelson – only one pos, known (Akld)

- **CR-GNR**
 - Nelson – two positive, both recent hospitalisation in SE Asia.
Provisional positive lab results
How recent MDRO positive?

- **MRSA** – if no ongoing risk factors then low carriage at 1 to 2 years.
- **VRE** - 64% negative at 4 months.
- **Enteric GNR**
 - Mean duration 160 days for *Kleb. pneumoinoa*
 - 31% still detectable at 1 year
 - Median duration 98 days, ↑ by AB
 - Median time to clear 6.6 months
 - 24% still positive at 3-8 months and 10% still positive at 3 years

NMDHB
‘Cull’ alert at 3 years if no ongoing risk factors
Finite colonisation?!

- Screening known MRSA and VRE carriers during prolonged admissions
- Median clearance
 - MRSA 11% undetectable at 23 days
 - VRE 18% undetectable at 26.5 days
- Cost savings from removal from isolation = $140/day
- Cost of tests = $8.50/test.

J Hosp Infect 2014; 88(4): 230-3
Heavy ‘shedders’

- Hospitalised patients with *C. difficile*
 - Active colitis: skin or environmental contamination in 5 of 6 (83%)
 - Asymptomatic carriers: 3 of 18 (17%)

- *Staphylococcus aureus*
 - Infected patients shed more than carriers

- ESBLs
 - IDUC 6.1-fold more environmental contamination
 - Infected less likely (probably due to antibiotics)

J Hosp Infect 2013; 85: 155-8

Joshua Freeman, Auckland – Antimicr Res IC 2014; 3: 5
Heavy ‘shedders’

- But….
 - Infection one day, on antibiotics the next
 - IDUC one day, out the next (or the opposite)
 - How do you define a draining wound?
 - Who is non-hygienic?

- Too confusing and complex to differentiate?
- Rehab: consult with IPC Nurse about each case?
How transmissible?

- **Gram-negative rods**
 - *Klebsiella pneumoniae* 26-fold more likely to grow from hospital room surface swabs than *E. coli*

 Joshua Freeman, Auckland – Antimicr Res IC 2014; 3: 5

 - If share room with ESBL-positive patient, risk of transmission (standard precautions only) is 1%

 CID 2012; 55: 1505-11

 - Cross-transmission of non-ESBL MDR GNR was 4.8%, MRSA 9% and ESBL 11%.

- **VRE**

 - Hospital acquisition 1.2% to 41.4% (VRE endemic?)

 Swiss MedWkly 2014; 144: w14009

NMDHB
MRSA, VRE, GNR all =
(including *E. coli* = *Klebs*)
Local prevalence and impact

Staphylococcus aureus

Isolates from all sources, 1 January 2013 to 31 December 2014. Method of testing: disk diffusion (Kirby-Bauer).

<table>
<thead>
<tr>
<th>Antibiotic</th>
<th>Percentage Susceptible – NELSON and MARLBOROUGH 2013-14 (No. tested)</th>
<th>Percentage Susceptible – NEW ZEALAND 2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clindamycin</td>
<td>97% (6376)</td>
<td>91%</td>
</tr>
<tr>
<td>Cotrimoxazole</td>
<td>99% (6389)</td>
<td>99%</td>
</tr>
<tr>
<td>Doxycycline</td>
<td>98% (5589)</td>
<td>98%</td>
</tr>
<tr>
<td>Erythromycin</td>
<td>91% (6422)</td>
<td>88%</td>
</tr>
<tr>
<td>Flucloxacillin¹</td>
<td>95% (6662)</td>
<td>90%</td>
</tr>
<tr>
<td>Fusidic acid</td>
<td>77% (492)</td>
<td>81%</td>
</tr>
<tr>
<td>Mupirocin</td>
<td>87% (489)</td>
<td>91%</td>
</tr>
<tr>
<td>Penicillin²</td>
<td>16% (5433)</td>
<td>14%</td>
</tr>
<tr>
<td>Rifampicin</td>
<td>100% (503)</td>
<td>-</td>
</tr>
</tbody>
</table>

1. Flucloxacillin susceptibility predicts susceptibility to amoxicillin-clavulanate and all cephalosporins
2. Penicillin susceptibility predicts amoxicillin susceptibility.

NMDHB
Isolate all MRSA (no differentiate MR-MRSA)
Local prevalence and impact

Enterococcus spp.

All sources, 1 January 2013 to 31 December 2014. Method: disk diffusion (Kirby-Bauer).

<table>
<thead>
<tr>
<th>Antibiotic</th>
<th>Percentage Susceptible – NELSON and MARLBOROUGH 2013-14 (No. tested)</th>
<th>Percentage Susceptible – NEW ZEALAND 2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amoxicillin¹</td>
<td>97% (1985)</td>
<td>95%</td>
</tr>
<tr>
<td>High-level gentamicin²</td>
<td>92% (13)</td>
<td>72%</td>
</tr>
<tr>
<td>Nitrofurantoin</td>
<td>99% (1824)</td>
<td>98%</td>
</tr>
<tr>
<td>Vancomycin</td>
<td>99.8% (1787)</td>
<td>98.2%</td>
</tr>
</tbody>
</table>

1. Amoxicillin susceptibility predicts penicillin and amoxicillin-clavulanate susceptibility
2. Only tested on blood isolates; predicts for synergistic effect when given with amoxicillin or vancomycin, not active against enterococci when used alone.

NMDHB
Isolate VRE, not ARE. (Maybe if ARE outbreak)
Local prevalence and impact

Pseudomonas aeruginosa

Mucoid and non-mucoid strains from all sources, 1 January 2013 to 31 December 2014. Method: disk diffusion (Kirby-Bauer).

<table>
<thead>
<tr>
<th>Antibiotic</th>
<th>Percentage Susceptible – NELSON and MARLBOROUGH 2013-14 (No. tested)</th>
<th>Percentage Susceptible – NEW ZEALAND 2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cefepime</td>
<td>99% (1626)</td>
<td>98%</td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>94% (1881)</td>
<td>93%</td>
</tr>
<tr>
<td>Gentamicin</td>
<td>91% (1624)</td>
<td>95%</td>
</tr>
<tr>
<td>Meropenem</td>
<td>-</td>
<td>95%</td>
</tr>
<tr>
<td>Piperacillin-tazobactam</td>
<td>99% (1623)</td>
<td>98%</td>
</tr>
</tbody>
</table>

1. Insufficient data – tested locally only on resistant isolates

NMDHB
Isolate carbapenem-res *Ps. Aeruginosa* (Maybe others if outbreak)
Known to unknown ratio

- Nelson Hospital – screened all inpatients in January 2014 (n=107)
 - 6 MDR-GNR (4 E. coli, 1 Kleb)
 - 1 VRE
- None detected on clinical samples
- 6 of 7 not known to be MDRO-positive before screening.

NMDHB
No isolate ESBLs (but alert for AB choice and other DHBs).
(Maybe isolate ESBLs if outbreak)
Identification and control of a gentamicin resistant, meticillin susceptible *Staphylococcus aureus* outbreak on a neonatal unit

Jonathan A Otter, Bethany Davies, Esse Menson, John L Klein, Timothy L Watts, Angela M Kearns, Bruno Pichon, Jonathan D Edgeworth and Gary L French

Journal of Infection Prevention 2014 15: 104 originally published online 11 February 2014

DOI: 10.1177/1757177413520057

The online version of this article can be found at:

http://bji.sagepub.com/content/15/3/104
Screening for MDROs
Screening – why?

- Because clinical samples only detect infected cases
 - Most CF/bronchiectasis carriers of *Pseudomonas aeruginosa* in sputum detected by clinical samples.
 - 15 to 81% MRSA carriers detected by clinical samples.
 - Minority of VRE and ESBL carriers detected by clinical samples.
- Detecting carriers enables isolation (most transmission from asymptomatic carriers) and good empiric antibiotic choice if develop infection.
Screening – why not?

- Time
 - Collecting swabs
 - Explaining positive results
- Cost.

Thanks to Dr Andrew Burns
Risk factors for MDROs

- Age
- Co-morbidities – esp. dialysis
- Surgery and invasive devices
- IDUC
- Rest home
- Prior broad-spectrum antibiotics…. Non-specific!
Risk factors for MDROs

- Overseas hospitals – especially long inpatient stay, high MDRO prevalence
- Overseas travel to developing country
 - Calgary to India: 60% come back carrying ESBLs
 - Australia to Asia: ≈ 40%
- Prior colonization with MDRO (how long since?)
- Positive family member (but do they know?)
So who to screen?

- ICU or Haem/Onc unit
 - May want to know all carriers – high risk infection and cross-infection
 - So swab all? Or.....

- Acute wards
 - Overseas hospital in last 6 months
 - Transfer from anywhere there is an outbreak MDRO
 - Others?
Sister we need a sample of his faeces, urine and semen.

Doctor how about you just send his underpants to the lab?
How to screen?

- **MRSA**
 - Nasal 93%
 - Nares + infected wound ≈ 100%
 - Others – groin/perineum (39%), axillae (25%)

- **VRE**
 - Stool ≈ peri-anal
 - *Enterobacteriaceae* (*E. coli, Klebsiella* etc.)
 - Stool ≈ peri-anal
 - *Pseudomonas, Acinotobacter* spp. etc.
 - Stool, throat, wounds/ulcers, IDUC urine......
Thank you
Richard.everts@nbph.org.nz